Risks of Using Antifouling Biocides in Aquaculture
نویسندگان
چکیده
Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211(®)), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.
منابع مشابه
Effects of Antifouling Biocides on Molecular and Biochemical Defense System in the Gill of the Pacific Oyster Crassostrea gigas
Antifouling biocides such as organotin compounds and their alternatives are potent toxicants in marine ecosystems. In this study, we employed several molecular and biochemical response systems of the Pacific oyster Crassostrea gigas to understand a potential mode of action of antifouling biocides (i.e. tributyltin (TBT), diuron and irgarol) after exposure to different concentrations (0.01, 0.1,...
متن کاملWorldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review.
Organic booster biocides were recently introduced as alternatives to organotin compounds in antifouling products, after restrictions imposed on the use of tributyltin (TBT) in 1987. Replacement products are generally based on copper metal oxides and organic biocides. This ban has led to an increase in alternative coating products containing the above biocides. The most commonly used biocides in...
متن کاملToxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test.
The present study evaluated the single and mixed toxicities of commonly used antifouling biocides (copper pyrithione, Sea nine 211, dichlofluanid, tolylfluanid, and Irgarol 1051) on the early embryogenesis of sea urchin Strongylocentrotus intermedius. Their toxicities were quantified in terms of the median effective concentration (EC50) reducing the embryogenesis success by 50%. For individual ...
متن کاملAntifouling activity of macroalgal extracts on Fragilaria pinnata (Bacillariophyceae): a comparison with Diuron.
The tributyltin-based products and organic biocides which are incorporated into antifouling paints have had a negative impact on the marine environment, and the ban on tributyltin-based antifouling products has urged the industry to find substitutes to prevent the development of fouling on ship hulls. Natural antifouling agents could be isolated from marine resources, providing an alternative o...
متن کاملAdverse Effect of Antifouling Compounds on the Reproductive Mechanisms of the Ascidian Ciona intestinalis
Fertilization and embryo development that occur in sea water are sensitive to xenobiotics from anthropogenic sources. In this work, we evaluated the influence of two antifouling biocides, tributyltin (TBT) and diuron, on the reproductive mechanisms of the marine invertebrate Ciona intestinalis. By using electrophysiological techniques, we examined the impact of these compounds on the electrical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2012